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ABSTRACT

We present the Topical Hidden Markov Model method, which
infers jointly a cognitive and student model from longitudi-
nal observations of student performance. Its cognitive di-
agnostic component specifies which items use which skills.
Its knowledge tracing component specifies how to infer stu-
dents’ knowledge of these skills from their observed perfor-
mance. Unlike prior work, it uses no expert engineered
domain knowledge — yet predicts future student perfor-
mance in an algebra tutor as accurately as a published ex-
pert model.
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1. INTRODUCTION

Assessing students’ skills from their performance requires a
cognitive diagnostic model specifying which observed items
require which skills (sometimes called knowledge compo-
nents), and a student model that infers how well students
know each skill, based on their performance on items re-
quiring that skill. For example, a cognitive diagnostic model
for a reading tutor that listens to children read aloud might
model the graphophonemic patterns in a word as distinct
skills. Cognitive diagnostic models are typically engineered
by human domain experts at considerable expense. Meth-
ods to infer them automatically from student performance
data have been restricted to static instruments such as ex-
ams or homework assignments administered only once or
twice. However, intelligent tutorial decisions require a stu-
dent model that traces changes in student skills dynami-
cally over time. This paper presents and evaluates the novel
data-driven Topical HMM method to discover a cognitive
diagnostic model and a student model simultaneously.
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Figure 1: Unrolled example of Topical HMM with
two skills (S = 2), for a single user (U = 1) with
three time steps (T; = 3). Student indices, parame-
ters (Q, K, D) and priors (o, 7,w) are omitted for clar-
ity. Dark gray variables are observable during both
training and testing. Light gray variables are visi-
ble only during training. White variables are never
observed (latent).

2. TOPICAL HIDDEN MARKOV MODEL

Topical HMM treats the skills required by a sequence of
observed items as latent topics. We use a mixed member-
ship model to represent the latent skill(s) required by an
item. That is, we represent the item as requiring a single
skill whose identity is uncertain but has a specified prob-
ability distribution, which we interpret as specifying the
relative weight of each skill for the item. Figure 1 unrolls
this graphical model for two skills. The absence of connec-
tions between knowledge nodes for different skills assumes
no transfer between skills, i.e., the student’s knowledge of a
skill can change only when the student encounters an item
that requires the skill. This assumption makes possible an
efficient Gibbs sampler not described here.

Algorithm 1 specifies Topical HMM’s generative story. It
has hyper-parameters, variables, parameters, and priors.

Topical HMM’s hyper-parameters are given or tuned:

e S is the number of skills in the model.
e U is the number of users (students).
e T, is the number of time steps student u practiced.

e M is the number of items. For example, in the case of
a reading tutor, M may represent the vocabulary size.



In a tutor that creates items dynamically, M is the
number of templates from which items are generated.

e L is the number of levels of knowledge of a skill, typ-
ically 2 (knowing it or not). To distinguish novice,
medium, and expert proficiency, we would use L = 3.

Topical HMM’s variables correspond to nodes in Figure 1:

e 1, ; is the item the student u encountered at time ¢.

® ¢.,: is a latent random variable specifying the skill(s)
required for item x, ¢.

o ky . is a variable that takes values from 1...L to rep-
resent the level of knowledge of skill s. There is a
Markovian dependency across time steps: if skill s is
known at time ¢ — 1, it is likely to still be known at
time ¢.

e vy, : represents student performance as a binary vari-
able (correct or not), observed only during training.

Topical HMM’s parameters specify the distributions of these
variables. Since we take a fully Bayesian approach, we model
parameters as random variables:

e (Q”%t is the cognitive diagnostic model. It represents
the skill(s) required for item z,: as a multinomial
Q" to model soft membership. For example, Q*** =
[0.75,0.25,0,0] means that item xz,,: depends mostly
on skill 1, less on skill 2, and not at all on skills 3 or 4.
Unlike prior work where the mapping of items to skills
must be given, Topical HMM allows @} to be hidden,
i.e. discovered entirely from data.

e K*!isa multinomial that specifies the transition prob-
abilities from knowledge state [ of skill s to other knowl-
edge states.

e D*!is a binomial that specifies the emission (output)
probability of a correct answer given the student’s pro-
ficiency level | on the required skill s.

Topical HMM uses Dirichlet priors «, 7, w for its parameters.

3. EVALUATION

We use data collected by the Bridge to Algebra Cognitive
Tutor® [8] from 123 students, each of whom encountered an
average of 340.7 items (minimum 48, maximum 562, median
341), for a total of 41,911. The data is unbalanced: over 80%
of the items were correct.

We randomly partition the data into three sets with non-
overlapping students — a training set with 97 students, and
development and test sets with 13 students each. We use
the development set to tune hyper-parameters and select
the number of skills to model the data. We use the training
set exclusively for learning the parameters of the model, and
we only report results on the development or test set. To
avoid tuning on test data, we used the test set only once,
just before writing this paper.

The data set contains data from 893 different problems.
Each problem consists of a sequence of one or more steps,
and it is at this level that we do our analysis. We consider
the different steps to be the items the student encounters.
Students did not follow the curriculum in the same order; the
tutor decided which problems to assign in what order, and
the students chose the order to do the steps in each problem.
To name items consistently across students, we named each

Algorithm 1 Generative story of Topical HMM
Require: A sequence of item identifiers x1...1, for U users,

number of skills S, number of student states L, number
of items M

1: function ToricaL HMM(z1 ...z, S, U, L, M)

2: > Draw parameters from priors:

3: for each skill s < 1 to S do

4: for each knowledge state [ < 1 to L do

5: Draw parameter K ~ Dirichlet(7°*)

6: Draw parameter D! ~ Dirichlet(w®!)

7 for each item m < 1 to M do

8: Draw Q™ ~ Dirichlet(«)

9: > Draw variables from parameters:

10: for each student u <— 1 to U do

11: for each timestep t + 1 to T, do
12: Draw skill gu,s ~ Multinomial(Q**)

13: for s+ 0to S do

14: if s =qu,+ then

15: > knowledge state could change:
16: E' ko > previous time step
17: Draw ky, . ~ Multinomial(Ks’k”)
18: else

19: > knowledge state can’t change:
20: wt ko
21: q <~ qui > current skill
22: K < kgt > current knowledge state
23: Draw performance vy, + ~ Multinomial(Dql’k/)

item by concatenating the tutor-logged problem name and
step name, yielding 5,233 distinct items.

We evaluate cognitive diagnostic model by how accurately
they predict future student performance. We operational-
ize predicting future student performance as the classifica-
tion task of predicting whether students correctly solved the
items on a held-out set. This paper focuses on predicting
performance on unseen students. To make predictions on
the development and test set, we use the history preceding
the time step we want to predict. To speed up computations,
we predict up to the up to the 200" time step in the test set.
Since we run evaluations multiple times in the development
set, we only predict up to the 150" time step. Therefore, our
development and test sets have 1950 and 2600 observations
respectively.

We evaluate the classifiers’ predictions using a popular
data mining metric, the Area Under the Curve (AUC) of the
Receiver Operating Characteristic (ROC) curve. The ROC
evaluates a classifier’s performance across the entire range of
class distribution and error costs. An AUC of 1 represents
a perfect classifier; an AUC of 0.5 represents a useless clas-
sifier, regardless of class imbalance. AUC estimates can be
interpreted as the probability that the classifier will assign
a higher score to a randomly chosen positive example than
to a randomly chosen negative example.

The manual expert cognitive diagnostic model was devel-
oped and refined by two cognitive scientists and a teacher
over four years. They first identified 76 different categories
of items, and then determined that students would need fifty
different skills to answer them. The manual model includes
some items that use multiple skills.

When we use Topical HMM with a manually designed
model, we initialize the parameter @) of Topical HMM with



the expert model and do not update its values. In the case
that the expert decided that an item uses multiple skills, we
assign uniform weight to each skill even though the experts
assumed a conjunctive model. Topical HMM cannot handle
a conjunctive cognitive diagnostic model.

We now describe the values we use for the priors’ hyper-
parameters «, 7, and w.

e Sparse cognitive model. We encourage sparsity on
the cognitive diagnostic model parameter (@), moti-
vated by the assumption that items use only a few
skills. We set o = 0.1, because when the value of
the hyper-parameter of a Dirichlet prior is below one,
the samples are sparse multinomials. For example,

Qi = [1,0,0,0] is a sparse multinomial, that repre-
sents that item ¢ depends on skill 1, but not on skill 2,
3 or 4.

e Practice helps learning, and there is no forget-
ting. Manipulating the magnitude of the hyperparam-
eters 7 and w allows us to select the strength of the
prior belief that students transition to a higher level
of knowledge, and that they do not go back to the
previous level. We use cross validation to select the
magnitude of these hyperparameters with values 10 or
100.

For our experiments, we initialize the model randomly
and then collect 2,000 samples from a Gibbs Sampling Al-
gorithm. We discard the first 500 samples as a burn-in pe-
riod. To infer future student performance, we save the last
1,500 samples, averaging over the samples and calculating
the Maximum A Posteriori (MAP) estimate.

We compare the performance of these methods:

e HMM. Can we find evidence of multiple skills? Topi-
cal HMM should perform better than a cognitive model
that assigns all of the items to a single skill. We
run Knowledge Tracing [4] with a cognitive diagnostic
model that has only one skill in total. This approach
is equivalent to a single HMM.

e Student Performance. What is the effect of stu-
dents’ individual abilities? We predict that the likeli-
hood of answering item at time ¢ correctly is the per-
centage of items answered correctly up to time ¢ — 1.
Intuitively, this is the student’s “batting average”.

¢ Random cognitive diagnostic model. Does the
cognitive diagnostic model matter? We create a ran-
dom cognitive diagnostic model with five skills and as-
sign items randomly to one of five categories. We then
train Topical HMM to learn the student model (transi-
tion and emission probabilities), without updating the
cognitive diagnostic model.

e Item difficulty. What is the classification accuracy
of a simple classifier? We use a classifier that pre-
dicts the likelihood of answering item x as the mean
performance of students in the training data on item
x. Note that this classifier does not create a cognitive
diagnostic model.

e Manual cognitive diagnostic model. How accu-
rate are experts at creating a cognitive diagnostic mod-
els? We use Topical HMM with the 50-skill cognitive
diagnostic model designed by an expert.

e Data-driven cognitive diagnostic model. We ini-
tialize Topical HMM with the best model discovered
using the development set (with 5 skills).

HMM  Student Perf. Random ltem diff. ~ Manual Data

Figure 2: Test set AUC performance of different
models

Figure 2 shows the AUC of the different methods applied
to the test set, with 95% confidence intervals calculated with
an implementation of the Logit method . Our data-driven
model with five skills outperforms all of the other models,
with an AUC of 77.28. Because the confidence intervals do
not overlap, we can conclude with 95% confidence that our
data-driven model is significantly better than assuming a
cognitive diagnostic model with a single skill (HMM), using
the student’s “batting average” (Student Perf.), or assigning
items to skills randomly (Random). The confidence inter-
vals for the data-driven cognitive diagnostic model, the man-
ually engineered cognitive diagnostic model, and the item
difficulty approach overlap, with AUC scores of 77.28, 76.71
and 74.76 respectively.

4. RELATION TO PRIOR WORK

This section relates Topical HMM to prior work in automatic
discovery of cognitive diagnostic models and student mod-
els. In psychometrics, the branch of psychology and educa-
tion concerning educational statistics, matrix factorization
methods have been applied to discover a cognitive diagnostic
model from static assessment instruments such as a single
exam, or a homework assignment. A survey of previous ap-
proaches to automatic discovery of cognitive diagnostic mod-
els can be found elsewhere [13]; popular approaches include
Item Response Theory [10], and matrix factorization tech-
niques such as Principal Component Analysis, Non-Negative
Matrix Factorization [5, 13], and the Q-Matrix Method [1].
These methods can help explain what skills students have
mastered, but they ignore the temporal dimension of data.
Unlike Topical HMM, these approaches do not discover a
clustering of items to skills per se: performance is based on
continuous latent traits. More specifically, matrix factor-
ization techniques predict student performance as a combi-
nation of latent user traits, and latent item difficulty traits
(skills) that may be multidimensional. Moreover, matrix
factorization techniques cannot be applied to the problem
of predicting performance of unseen students, because they
require the latent user trait matrix. This problem also car-
ries over for higher dimension factorization techniques, such
as tensor factorization [12].

Learning Factors Analysis [3] uses temporal data, but re-
quires initial knowledge to improve upon. Dynamic Cog-
nitive Tracing [7] proposed a fully automatic method, but
did not scale due to memory use exponential in the number
of items and runtime exponential in the number of skills.
Moreover, Dynamic Cognitive Tracing was only tested on
synthetic data.

1ht‘t:p ://www.subcortex.net/research/code/area_
under_roc_curve



To our knowledge, we are the first ones to take time into
consideration to estimate a cognitive diagnostic model from
data of real students interacting with a tutor.

Knowledge Tracing [4] is a popular method to model stu-
dents’ changing knowledge during skill acquisition. It re-
quires (a) a cognitive diagnostic model that maps each item
to the skill(s) required, and (b) logs of students’ correct and
incorrect answers as evidence of their knowledge of particu-
lar skills. Knowledge Tracing can be formulated as a graph-
ical model: items that belong to the same skill are grouped
into a single sequence, and an HMM is trained for each se-
quence. The observable variable is the performance of the
student solving the item, and the hidden state is a binary la-
tent variable that represents whether the student knows the
skill. Topical HMM generalizes Knowledge Tracing, which
assumes the cognitive diagnostic model is known and each
item uses exactly one skill. Topical HMM discovers the cog-
nitive diagnostic model automatically and is more flexible
since it allows more than one skill per item.

Attempts to use tensor factorization — matrices with more
than two dimensions — to model student learning have been
limited [12] as they require all students and items to be seen
during training, which is often not feasible.

Other approaches to student modeling also exist. Per-
formance Factors Analysis [6] predicts student performance
based on item difficulty and student performance. Learning
Decomposition [2] uses non-linear regression to determine
how to weight the impact of different types of practice oppor-
tunities relative to each other. Parameter Driven Process for
Change [11] is able to use different student modeling tech-
niques, such as Knowledge Tracing or NIDA [9], to group
students with similar response or skill patterns over time.

5. CONCLUSIONS AND FUTURE WORK

Our main contribution is a novel method, Topical HMM,
which discovers cognitive and student models automatically.
A difficulty of modeling real student data is sparsely ob-
served students, items and skills. Unlike some prior meth-
ods, Topical HMM discovers cognitive diagnostic models
that generalize to unseen students. Our work is also the
first automatic approach to discover a cognitive diagnostic
model from real student data collected over time.

Previous work on automatic discovery of cognitive diag-
nostic models from static data was successful in distinguish-
ing between broad areas (i.e., French and Math), but not
finer distinctions within an area [13, 5]. Given that we were
able to discover different skills within an algebra tutor data
set we are optimistic about this line of research. In future
work we are interested in assessing the interpretability of the
cognitive diagnostic models discovered by Topical HMM. A
limitation of this study is that we evaluated our approach
on only one dataset. Future work may test Topical HMM
on more data sets from real students.
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