
PREDICTING ORAL RE

Jack Mostow, Joseph Beck, S. Vanessa Winter

Project LISTEN (http://www.c
Robotics Institute, Carnegie M

RI-NSH 4213, 5000 Forbes Avenue, P
 

ABSTRACT 

This paper explores the problem of predicting specific reading 
mistakes, called miscues, on a given word.  Characterizing 
likely miscues tells an automated reading tutor what to 
anticipate, detect, and remediate.  As training and test data, we 
use a database of over 100,000 miscues transcribed by 
University of Colorado researchers.  We explore approaches 
that exploit different sources of predictive power:  the uneven 
distribution of words in text, and the fact that most miscues are 
real words.  We compare the approaches’ ability to predict 
miscues of other readers on other text.  A simple rote method 
does best on the most frequent 100 words of English, while an 
extrapolative method for predicting real-word miscues 
performs well on less frequent words, including words not in 
the training data.  

1. INTRODUCTION 

This paper addresses the problem of how to predict oral 
reading mistakes, called miscues.  The ability to predict likely 
student mistakes is valuable in understanding, detecting, and 
remediating student difficulties [1]. Our objective is to 
characterize oral reading behavior statistically, and to generate 
models to help Project LISTEN’s computer Reading Tutor [4] 
listen more accurately for miscues. This work may also be of 
interest to researchers and educators.  For example, reading 
researchers and practitioners have used miscue analysis to infer 
children’s reading strategies [3].  [2] discusses additional 
motivation for the problem of predicting miscues. 

 Our goal is to identify a small set of likely miscues to 
add to the Reading Tutor’s language model.  A tutor that 
listened for every possible phoneme sequence in place of a 
correct word would hallucinate too many miscues, given the 
limited accuracy of current speech recognition technology.  In 
general, any computer tutor that tracks student behavior suffers 
from this problem of combinatorics:  the more possible student 
paths the tutor has to consider, the more processing power 
required and the less certain the tutor can be. 

Miscues include repetitions, insertions, substitutions, 
omissions, and hesitations.  We are interested here in predicting 
insertions and substitutions – that is, sounds that a disfluent 
reader is likely to produce other than words in the text at hand.  
[6] manually identified children’s miscues on specific words in 
a given text.  [5] approximated miscues as concatenations of 
other words in the text, for example “elephant” as “and of 
that,”  and also predicting phonemic truncations of the correct 
word.  For example, the word “reading” can be truncated to /r/, 
/r ee/, /r ee d/, /r ee d ih/, or /r ee d ih n/.  This model predicts 
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pped word endings and some false starts, but not other 
scues.  When used in a speech recognizer, it detected only 
ut half of the miscues serious enough to threaten 
prehension, with false alarms on approximately 4% of 

rectly read words.  The problem of false alarms precludes 
ply modeling miscues as arbitrary phoneme sequences.  

2. MISCUE DATABASE 

e Colorado database contains over 100,000 oral reading 
scues recorded, transcribed, and annotated by Professor 
hard Olson’s team at the University of Colorado. The 
ding material consists of seven graded text passages from 
, ranging from second to eighth grade in difficulty and 296 
461 words in length, with a vocabulary of 881 distinct 
rds.  The Colorado database encodes descriptive information 
ut each text token, including its passage, location on a 
puter display, spelling, and pronunciation. 
Most of the 868 students were between eight and twelve 
rs old.  Each student read one passage, selected to be 
llenging for that student’s reading level.  Human coders 

tened to the recorded oral reading.  For each miscue, they 
ed the word on which the miscue took place, transcribed the 

scue phonetically, and categorized its type and severity.  The 
lorado database represents miscues phonetically rather than 
hographically.  Translating the transcribed pronunciation to 
 spelling of the actual word is a surprisingly thorny problem, 
we shall see later.  But first we describe an approach that 
es not require such translation. 

3. ROTE PREDICTION OF MISCUES 

baseline “rote” approach to training a miscue predictor is 
ply to enumerate specific actual miscues on particular 

rds, and predict that they will recur.  Given enough training 
a, this naive method will achieve high predictive coverage, 
thout predicting any miscues that never occur.  Of course 
n the Colorado database is not large enough to approach 

s asymptotic behavior for most of the 669 words in the 
ining vocabulary – let alone for other words, for which it can 
ke no predictions at all.  However, the rote approach 
loits the uneven distribution of words in natural text:  high-

quency words have enough examples of miscues in the 
lorado database to cover a surprisingly large amount of test 
a.  Another reason to try the rote approach is as a baseline 
inst which to compare more complex methods. 
To apply and evaluate the rote approach, we split the 

lorado data into training and test sets, just as in [2]:  we held 
t the third and seventh grade passages as test data, and used 
 rest as training data.  Because each subject read only a 



single text passage, there was no overlap in subjects or text 
passages between our training and test data. 

We now quantify the overlap in words and miscues 
between training and test sets.  For both words and miscues, we 
distinguish between types and tokens.  A word token is an 
instance of a word type.  For example, in the sentence “The 
dog hid in the shed,” there are 6 word tokens but only 5 word 
types, because “the” occurs twice.   

The five training passages consist of 1,849 word tokens, 
with a vocabulary of 669 distinct word types.  Our training data 
consists of miscues with phonetic transcriptions, mostly 
substitution errors.  All the words were misread at least once, 
with 49,848 transcribed miscues of 22,927 distinct types. 

The two test passages consist of 875 word tokens and 364 
word types.  Although only 163 of the 364 word types in the 
test data occur in the training passages, they cover 594 of the 
875 word tokens in the test passages, because high-frequency 
words comprise much of the text. 

We expect a rote model to do well on well-trained miscues 
– that is, words with plenty of training examples.  When we 
plotted coverage against word frequency, we found that the 
rote approach did best on the 100 most frequent words of 
English, 89 of which occurred in the training data.  There were 
diminishing returns on the rest of English, only 581 words of 
which occurred in the training data. 

One problem with the rote model is that it predicted an 
average of 34.3 possible distinct miscues for each word.  Our 
experience with Project LISTEN’s Reading Tutor suggested 
that listening for so many miscues would raise too many false 
alarms.  We noticed that some miscues occurred more 
frequently than others.  To improve precision without overly 
harming coverage, we decided to limit predictions to miscues 
produced by more than one student.  We reasoned that such 
“popular” miscues would be much less likely to be 
idiosyncratic to a particular student, and hence much likelier to 
show up in a test set of miscues by different students. 

The resulting method performed as follows.  Overall 
coverage was 6.1% of miscue types and 22% of miscue tokens.  
The pruned rote model made fewer miscue predictions for each 
target word type – only 7.4, versus 34.3 for the unpruned 
model, thanks to ignoring idiosyncratic miscues in the training 
set.  However, recall of the pruned model was similar to that of 
the unpruned model (22% vs. 26% for token recall).   

4,640 of the miscue tokens in the test set occurred on the 
100 most frequent words of English.  For these words, miscue 
type coverage was 34% and miscue token coverage was 67%, 
averaging 11.5 predictions per word type.  Thus the rote 
approach performs respectably on common words.  

10,973 of the miscue tokens in the test set occurred on less 
frequent (word rank > 100) words.  For these words, miscue 
type coverage was 2.2% and miscue token coverage was 8%, 
with an average of 6.2 predictions per word type. 

Even though rarer words are known to account for many 
fewer text tokens, they account for the bulk of the miscue 
tokens because they are so much harder for students learning to 
read.  How can we predict miscues better on those words? 

4. EXTRAPOLATING MISCUES 

Most substitution errors in oral reading are themselves real 
words: approximately 45% of the miscues in the Colorado 
database are real words, 30% have no transcription (for 
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mple, omissions), and only 25% are non-words.  By 
using on real-word miscues, we can move miscue prediction 
m pronunciation space to word space, where we can exploit 
tematic regularities in the relation of miscues to target 
rds.  For example, we might use dictionary knowledge to 
dict miscues with a similar spelling as the target word, a 
ilar pronunciation, the same root, or a related meaning. 

. Data preparation 

e University of Colorado database provided only the 
onetic transcription of each miscue. To identify the word, we 
 to find it in a pronunciation dictionary.  The Carnegie 
llon Speech Group has a large pronunciation dictionary 
tp://www.speech.cs.cmu.edu/cgi-bin/cmudict) but it uses a 
ferent notation based on the phonemes used in the Sphinx 
ech recognizer.  We first used the converter described in [2] 

translate miscues from Colorado notation into Sphinx.  
The next step was to find the corresponding word.  This 

k was not as trivial as finding an exact match.  Only 40% of 
 phonetically transcribed miscues matched the Sphinx 
tionary pronunciation perfectly. The right word might be in 
 dictionary but its pronunciation might not match exactly, 
ether because of variations in defined pronunciations, or 
ause the student pronounced the word differently.  In the 
mple above, the transcribed miscue /wut/, translated into the 

hinx phonemes /W AH T/, might still not match the 
erence pronunciation /HH W AH T/. 
To solve this problem, we looked for the best phonemic 

tch instead of a perfect match.  To compute match distance, 
 used a modified version of the Levenshtein edit distance 
orithm, with different weights to penalize or tolerate 
stitutions, insertions, and deletions. The algorithm assigned 
- or 2-point penalty for substituting similar phonemes, and a 
oint penalty for non-similar phonemes.  We then normalized 
 total penalty by dividing by the number of phonemes in the 
nunciation we were trying to match. 
Computing the Levenshtein distance between every miscue 
 every word in the dictionary took longer than we had.  To 
ed up the search, we exploited the fact that most miscues 
rt with the same letter as the target, and only considered 
h words as possible matches.   
We needed to distinguish between good and bad matches, 

 several reasons.  One reason was the same-first-letter 
ristic, because it excluded proper matches for those real-

rd miscues that started with a different letter, finding bogus 
tches instead.  Another reason was that our dictionary 
ked some of the miscue words, especially inflections.   
There were a total of 45,503 miscues labeled as real-word 

scues, of which we used 33,491 for training data and 12,012 
 test data.  We found that a threshold of 1.0 on normalized 
tch penalty excluded bogus matches fairly well.  This 
eshold eliminated as training examples 40% of the miscues 
rked in the Colorado data as real words.  Allowing poorer 
tches would have increased the percentage of mislabeled 
ining data.  For example, one miscue on the word 
UNSHINY” was transcribed as /shoo’ shing/, which 
nslates to “shushing” (asking someone to be quiet).  Our 
tionary did not have this word, and was forced to map it to 
CHWING.”  This match scored 2.0, too bad to include as a 
ining example. 



4.2. Predictive features of real-word miscues 

How can we learn to predict real-word miscues from a database 
of miscues on only a few hundred words of text?  That is, how 
can we generalize to predict miscues on words for which we 
have sparse data or none?  To address this problem, we 
abstracted from specific miscues to features that might 
generalize.  For brevity we omit here other features that we 
considered but did not try. 

A real-word miscue involves a particular student 
misreading a target word as some other word.  We therefore 
looked for features of the student, the target word, the miscue 
word, and relations among them.  We had no explicit 
information about the students.  However, passages were 
assigned based on student reading levels.  We therefore used 
passage level as a proxy for student reading level.   

We expected that the miscue would resemble the target 
word in one or more ways, which we encoded in terms of the 
following features.  To quantify similarity in spelling, we 
computed their edit distance, the difference between their 
lengths, and the absolute value of that difference.  To help 
check for dropped and added plurals, we added a feature that 
was true when one word ended in S and the other did not. 

To quantify similarity of pronunciation, we computed the 
edit distance between phoneme sequences, using the same 
metric described above for matching transcribed miscues to 
dictionary entries.  Miscues usually have the correct first 
phoneme and often have the correct last phoneme, so we 
encoded features for matches on the first and last phonemes. 

We expected that students would have more trouble with 
rarer words, and would be likelier to know – and therefore 
guess – more frequent words.  We therefore encoded the 
frequency rank of both target and miscue.  (The Nth most 
frequent word has frequency rank N.)  We used a word 
frequency table (generated by Project LISTEN member Greg 
Aist) of 25,000 words in a corpus of children’s stories.  This 
table covered all but 55 of the miscue word types. 

4.3. Generalizing from the features 

We tried various methods to predict miscues from the features.  
Our initial explorations plotted the distributions of feature 
values for the miscues in the training set. One finding was that 
“big kids make little mistakes, and vice versa.”  That is, 
normalized edit distance between target word and miscue was 
larger on lower passages. 

We adopted a classifier learning approach to distinguish 
probable miscues.  Given a target word, we would then use the 
classifier to predict which words in the dictionary were likely 
to occur as miscues for the target. 

For this approach, we needed not only positive training 
examples of real-word miscues, but negative examples as well 
– words that were not produced as miscues.  We chose the 
negative training data from a region containing most of the 
miscues, as follows.  For each target word, we selected from 
the dictionary all words that started with the same first letter as 
the target word, were within edit distance of 3 or less, and 
normalized pronunciation distance of 3.75.  These words, 
minus the actual miscues in the training data, comprised the 
negative training examples for each target word. We wanted to 
train the classifier to distinguish miscues from real words 
within this region, and to avoid swamping the learning 
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 times as many negative training examples as positive ones. 
To train a classifier, we wanted to start simple and fast, so 

 used linear discriminant as implemented in SPSS.  This 
thod took less than a minute on a training set of 341,224 
mples.  Table 1 describes the standardized coefficients of 
 linear discriminant, listed from most to least predictive.  
e lower the output of the classifier, the more likely the word 
o be a real student miscue. 

EDITDIST 0.675 
FMATCH 0.602 

PHONAVER 0.447 
PHONDIST 0.364 
FTARGET -0.303 

GRADEGRO -0.046 
FIRSTPHO 0.045 

GRADE -0.024 
LASTPHON -0.007 

Table 1. Coefficients for linear discriminant 

e first feature is the edit distance between target and miscue:  
scues tend to be spelled like the target.  The second feature is 
 frequency rank of the miscue, confirming that students 

ess more frequent words.  The negative coefficient on the 
quency of the target word (FTARGET) suggests that 
dents tend to make miscues on rarer words.   
The next two features involve pronunciation – normalized 
 absolute distance between target and miscue. Matching the 
t and last phonemes (FIRSTPHO and LASTPHON) added 
le predictive power.  One reason may be that the training 
a was restricted to miscues that started with the same first 
ter as the target word, and are therefore likely to start with 
 same phoneme.   
Student features based on passage level (GRADE and 
ADEGRO) were not very predictive.  One reason may be 
t these features correlated with target word frequency rank, 
ich tended to be lower in easier passages.   

5. PERFORMANCE ON TEST DATA  

ble 2 shows how well the extrapolative model performed 
pared to the rote model trained on the same data.  Its 

rall coverage of miscue tokens was 38%, versus 22% for 
 rote model.  However, its precision was somewhat worse, 
that it predicted an average of 8.8 miscues for each target 
rd type, versus 7.5 for the rote model. 
Evaluating coverage for the rote method simply involved 
nting how many of the actual miscues occurred in the list of 

scues predicted for their target word.  Predicted and actual 
scues were represented in the same phonetic notation, and 
ld therefore be compared using a string equality test. 
In contrast, evaluating coverage for the extrapolative 

thod was more complex.  We translated each phonetically 
nscribed miscue in the test set into the spelling of the 
responding real word and generated plausible negative 
mples by using the same method as for the training data.   
To compare the rote and extrapolative methods more 

ormatively, we analyzed performance separately on two 
ts of the test set, based on the frequency of the target word 
English.  We knew that the rote model achieved good 



coverage on the most frequent 100 words of English, and little 
or no coverage for less frequent words. 

For more frequent words, the extrapolative model achieved 
much lower coverage than the rote model (39% vs. 67%), 
though with two fewer predictions per target word (9.1 vs. 
11.5).  However, for less frequent words, the extrapolative 
model achieved over four times the coverage of the rote model 
(38% vs. 8%), with only two more predictions per target word 
(8.7 vs. 6.2).  Of course this difference reached an extreme for 
miscues on the 201 target words in the test data that did not 
occur in the training data, so that the rote method could not 
predict them at all.  The advantage of the extrapolative model 
is precisely its ability to predict real-word miscues on words 
that – like most of English – were not in the training data. 

 
  Rote Extrapolative 

Coverage 22% 38% 
Overall Predictions per 

word 7.5 8.8 

Coverage 67% 39% Word rank 
≤ 100 Predictions per 

word 
11.5 9.1 

Coverage 8% 38% 
Word rank 

> 100 Predictions per 
word 

6.2 8.7 

Table 2.  Coverage and predictions per word 

6. CONCLUSIONS 

Predicting oral reading miscues is important to detecting and 
remediating them in an intelligent tutor. Here we report, 
evaluate, and compare two approaches to this problem. 

The “rote” approach simply predicts that students will 
produce the same miscues seen in the training set, especially 
“popular” miscues that more than one student produced.  The 
rote approach performed surprisingly well, especially on the 
100 most frequent words of English.   

The “extrapolative” approach focuses on real-word 
miscues, where the student misreads the target word as some 
other word.  This approach predicts that the relation of target to 
miscue will be approximately the same as in the training set.  
This relation is expressed in a feature representation based on 
the spelling, pronunciation, and frequency of the target and 
miscue words.  The extrapolative approach generalizes to 
predict real-word errors on words not seen in the training data 
and it outperformed the rote approach on less frequent words. 

It is natural to ask how these methods fare compared to [2], 
but a direct comparison is problematic.  [2] addressed the 
closely related but slightly different problem of predicting the 
frequency of different phoneme-level decoding errors.  
Consequently they reported different evaluation criteria than 
those here.  However, we can usefully compare the three 
approaches in terms of which miscues they predict.  [2] trained 
phoneme-level malrules that predict miscues whether or not 
they are words, and whether or not the target word is in the 
training set – but only if the miscue differs from the target 
word by adding, dropping, or substituting the individual 
phonemes specified by the malrules.  The rote approach also 
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7. 
dicts miscues whether or not they are words, but only for 
get words that occur in the training data, especially high-
quency target words.  The extrapolative approach predicts 
ly real-word miscues, but generalizes to lower-frequency 
get words that do not appear in the training data. 
One future direction is to integrate these methods so as to 
bine the different regularities they exploit in phonology, 

lling, and uneven distribution of words and miscues.  It 
ld be especially fruitful to exploit knowledge about the 
ding skills we want students to learn, so as to characterize 
ich manifested deficiencies in those skills are not only 
eliest, but most important to remediate – or to ignore.  
ally, we are working to identify which predicted miscues a 
ech recognizer can detect accurately enough to let Project 
TEN’s Reading Tutor listen for them. 
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